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Azyl ketones with ortho alkyl substituents are noteworthy for their photochemical stability, 

found to be due to a very efficient end reversible hydrogen abstraction reaction.1 Although 

apparently mechanistically similar to the Type II photoelimination, a number of authors 1,2,3 have 

recently suggested that a direct conjugative link between reaction centers may provide a unique 

and energetically favorable mechanism for photoenolization. Evidence has been presented2 for the 

direct formation of sn excited triplet enol (in contrast to the 1,4 biradical formed in the Type 

II reaction). 

Photoexcited o-methylvalerophenone, 1, has available two chemical options: abstraction by 

oxygen of sn ortho methyl hydrogen (photoenolization) or a y-hydrogen from the alkyl chain 

(photoelimination). First investigation of 1 noted that no photoeliminaticm occurred.3 The use 

of bimolecular hydrogen abstraction reactions by alkq radicals as a model for aryl ketone reac- 

tivit+ would not have placed any strong preference for a primary benzylic hydrogen over a 

secondary aliphatic.5 It is tempting, then, to account for the strong preference in terms of an 

energetic favorability for abstraction at the ortho methyl site. 

With these considerations in mind we offer three categories of explanations for this behav- 

ior: 1) Geometrical end statistical factors which msy contribute significantly in this jntra- 

molecular process, 2) Fundamental differences in the two mocesses as suggested above snd 3) 

Unsuitability of alkow radicals as models for these reactions. (Because an n,Tplc is believed to 

be the reactive state in photoreactions of aryl ketones, perhaps a model somewhat more electron 

deficient on oxygen than a free radical is required.) 

Decomposition of hypochlorite 2 in Ccl, solution with weak W initiation afforded a mixture 

of chloroalcohols (inter alia) which after treatment with sodium hydride in ether6 generated a -- 

high yield of cyclic ethers7 identified as 2 and cis and trsns 4 by synthesis8 and their spectral - -_ 
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and analytical properties. g The ratio of 1 to combined 5 remained invariant at 30 + 3:l 

through a variety of reaction conditions.10 It is well established that this reaction involves 

a free radical chain process. 14 
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Photolysis of o_methylvalerophenone results 

yield for the process in hexane or benzene, $ = 

the value $I = 0.41 for valerophenone itself.15 
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in o_methylacetophenone formation, the quantum 

0.010 f 0.001. This value is smell relative to 

A g- or p-methyl substituent does not change 

the valerophenone value to sny large degree, 16 so one can assume that the major lowering effect 

in the g-methyl case is photoenolization. A potential complicating feature in determining rela- 

tive reactivities of ortho hydrogens vs. y-hydrogens in the photochemical system is the much 

discussed reversal17 of initially-formed birsdical to the origin&l. ketone. Following Wsgner's 

assumption that addition of alcohol to the solvent system retards this reverssl, 18 and further 

that with sufficient alcohol it does not occur, 15a it can be noted in the accompanying plot 

(Figure I) that a value @ = 0.038 f 0.002 was obtained. Since valerophenone achieves unity 

quantum efficiency, snd since significant reactionless decay would not be anticipated for 

o_methylvalerophenone one obtains a selectivity factor of 26~1 for total abstraction of g-methyl 

z. y-methylene hydrogens. This value is quite close to the value 3O:l for total c-methyl vs. 

y-methylene in the free-radical system. The closeness of these values affirms the usefulness of 

the free-radical model in aryl ketone photochemistry and also demonstrates that no kinetic 

difference can be detected between photoenolization and the photoelimination reaction. 
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Figure 1: Effect of added q-butyl alcohol on quautum 
yield of photoelimination for o_methylvalerophenoue. 
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